FROM NANO-SCALE TO TERA-SCALE An Intel Perspective

Jerry Bautista, PhD Co-Director Tera-scale Program Intel Microprocessor Research

Corporate Technology Group (CTG) Strategic Objectives

Conduct world-class research

Deliver innovative technologies from concept to product adoption

Collaborate with industry via standards, alliances and evangelism

Engage worldwide for the best research and technology

Research at Intel

Nearly 1000 researchers

15 locations worldwide

Innovative research models

Nanodevice R&D

Source: Intel

Phase Change Memory PCM Cell

- Non volatile
- Bit alterable
- Very fast and low power
- Scalable well below 45 nm
- High endurance (>100M writes)
- Partners
 - Ovonyx Since 2000
 - R&D with ST since 2003

Digital Multi-Radio Technology

Digital Multi-Radio Components

Conventional FEM v. Flexible FEM

Today's Conventional Multi-Standard (WiFi a/b/g) + WiMax FEM Next Generation Conventional Multi Standard (WiFi a/b/g) + WiMax FEM

Energy Efficiency: Average vs. Idle

Display Self-Refresh Extended Idle Mode

Power Delivery Inefficiency

CUMULATIVE DATACENTER POWER DELIVERY EFFICIENCY

Source: Intel

Enabling Full Internet in Your Pocket

Intel Tera-scale Computing Research

More than 100 projects worldwide

Intel Higher Education on track to impact 400 university curricula by end of 2007 \rightarrow Focus on Parallel Programming

What Future Chips Might Look Like: From a few large cores to many simpler cores

Optimized for speed

Optimized for performance/watt

Shared Local Cache Cache Streamlined IA Core

Pentium® processor era chips optimized for raw speed on single threads. Pipelined, out of order execution. Today's chips use cores which balance single threaded and multi-threaded performance 5-10 years: 10s-100s of IA cores, interconnect network, Some non-IA accelerators

Other reasons for many cores

Sleep

Sleep

Integrated Network

•Higher b/w & lower latency compared to SMP

Spare

Spare

Spare

IA

Sleep

 Fine grained power management
Voltage scaling at core level

• Yield & Resiliency Spare cores & binning Hybridization

Integration of fixed function accelerators

es

Improved virtualization another likely benefit of many core

What to do with the performance?

available FLOP!

Ray Tracing – photo realism

3D Graphics Rendering

shadows, etc.

 Today's Game Graphics Processing : Each triangle is processed independently in layers, foreground, background,

 Ray Tracing – physically simulating light, compute intensive, collision of light rays with objects, reflections, refractions.

Can be used to detect body-to-body collisions as well

(intel)

Stats:

Render Time: 30 minutes Processor: P4 3Ghz RAM: 512MB Renderer: Mental Ray DOF: Simulated in Photoshop

~3000 FLOPs/Ray Segment ~1500 Bytes/Ray Segment

Rendering consumes ~90% of system resources.

Model-Based Computing

- Representing and processing data using digital "concepts" ullet
 - Composed of mathematical rules and variables that approximate reality
 - Allow computers to recognize, manipulate, and represent things and ideas

Facial

Model

Climate Model

Atomic Model

Cloth Body Model Model

Financial Model

Behavioral Model

Example: Modeling body motion

Display representation

Polaris: Tera-Scale Prototype

era-scale Software Opportunities and Risks

duced Productivity in Parallel Programming

- Decomposition Difficult to compose parallel programs
- Data races Bugs increase exponentially with degree of parallelism
- Load Balance Trouble keeping all processors busy

Major challenges in enabling "easy" parallel programming - a **major** focus area for Research

EVERYTHING MATTERS

ergy. Performance. Storage. I/O. Mobility. curity. Reliability. Applications. ovisioning. Cost.

